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Abstract

The differentiation transforming (DFT) system is developed to produce the tangent linear codes, which is used to calculate the Jaco-
bian- and the Hessian-vector products with no truncation errors. This paper first gives the introduction of the functionality and features
of the DFT system, and then discusses several techniques for the implementation of automatic differentiation tools, including data depen-
dence analysis, singular differentiation and code optimization. Finally, the codes generated with DFT used in several applications have
been demonstrated.
© 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

A large number of algorithms are closely related to the
calculations of derivatives in solving the nonlinear problems.
To solve an unconstrained nonlinear optimization problem,
it is much indispensable to calculate the gradients of the
objective function, and sometimes the Hessian or the Hes-
sian-vector products. To solve the nonlinear equations, it is
much indispensable to calculate the Jacobian of the vector-
valued functions, or the Jacobian-vector products within
the Jacobian-Free Newton—Krylov (JFNK) method [1]. In
some other algorithms such as the Halley-like algorithms
[2], the calculation of three and higher order derivatives is
required. As we know, the traditional finite differencing
(FD) method is inherited with truncation error whose value
is much dependent on the way the values of the small incre-
ments are selected.

" Corresponding author. Tel.: +86 10 58812132; fax: +86 10 58812115.
E-mail address: walls@sccas.cn (Q. Cheng).

Automatic differentiation (AD) [3] is a technique
through which the derivatives of a function that is defined
by a number of computer program lines can be calculated
without truncation errors. To calculate the first-order
derivatives, there are two typical differentiation models,
the tangent linear model and the adjoint model, which
calculate derivatives in a natural way around the sequence
of running the program and in a reverse way, respectively.
Using the chain-rule law, the tangent linear model can be
derived from a top—down accumulation of the underlying
functions, while the adjoint model can be derived from a
bottom—up accumulation. In practice, the tangent linear
model can be directly used to calculate the Jacobian-vector
products, while the adjoint model can be used to calculate
gradients with ideal computational cost. By a combination
of both the methods, the second-order adjoint model can
be simply derived, which can be used to calculate the Hes-
sian-vector products with the cost in terms of operations
count and memory as roughly twice that of the adjoint
model. So far, AD has been used in a variety of applica-
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tions such as variational data assimilation [4], parameter
recognition, sensitivity analysis [5], singular vector and sin-
gular value decomposition [6], and computational fluid
dynamics (CFD).

Apart from the calculation of the Jacobian-vector
products, the tangent linear model can also be used to cal-
culate Jacobian and gradients with the computational cost
proportional to the number of independent variables,
which is roughly twice that by using the finite differencing
approximation. However, as referred to in most docu-
ments, the derivates calculated with the tangent linear
model have the advantage of no truncation errors, such
that the number of convergence steps in the Newton algo-
rithm system could be dramatically reduced to nearly the
optimum point. In addition, the tangent linear model is
also employed in testing the correctness of the adjoint
model.

Since the values of the required variables in the calcu-
lation of each derivative term can be derived from the
above calculations, it is relatively easy for the implemen-
tation of the tangent linear model. However, one could
meet some difficulties in the large-scale applications, such
as the accuracy uncertainty of the tangent linear model
and the unacceptable cost both in running time and in
memory. To check the correctness of the tangent linear
model, the knowledge in terms of inputs and outputs of
the argument parameter list is required in advance before
making a reliable testing function. Although any variable,
which is independent or not, can be viewed as an input
and output variable mathematically, the memory require-
ment of the testing function in the large-scale applications
could be far beyond the limitation of the system memory
if each of the argument parameters is uniformly taken as
an input and output variable in this way. At the same
time, the input/output relationship of global variables
employed in a number of procedures cannot be calculated
accurately if they are used in an implicit way, which is
typically declared in a common block in Fortran 77 and
used as an external variable in C/C++. In such a case,
the input/output relationship of global variables is either
dependent on the values of the inputs, or cannot be found
out through simple static dependence analysis. For this
reason, the dependence analysis in terms of inputs and
outputs is one of the most challenging problems in recon-
structing the tangent lincar models for the large-scale
applications.

Another important aspect is the data dependence analy-
sis, which is required in seeking the sparse structure of
Jacobian and Hessian, as well as in deriving the left/right
seed matrix [7] as the inputs for the adjoint model and
the tangent linear model, respectively. However, there are
at least two aspects of difficulties. As we know, the running
behavior of a program cannot be predicted in those cases
including switch and selective structures. In other words,
the reliability of the sparse structure of the Jacobian that
is derived through static data dependence analysis can be
acceptable only in smooth problems. In terms of memory

and the complexity of data dependence analysis, the costs
for calculating the sparse structure of the Jacobian are
not acceptable if the scale of a specific application is terrif-
ically large. Another difficulty is the data dependence anal-
ysis for array data, especially, which index set is dependent
on the values of input variables, or which elements are used
in different ways. Fortunately, in most instances, it is help-
ful to take a variety of array indexes as the uniform one in
a simple way.

It will be much helpful to develop a special compiler of a
specific tool for generating the tangent linear models for
Fortran 77 codes with YACC [8]. Different from any other
language compiler, the lexical/syntax analyzer of an AD
tool is relatively smaller concentrating on the analysis of
the data differentiability. Except for extracting detailed
information from the process of lexical analyzing and syn-
tax parsing, one should make a productive syntax parser
for producing optimized derivative codes, which is not easy
in the cases in which the structure of a program object is
terrifically complicated or in which a statement is terrifi-
cally long.

So far, a number of tools have been developed for gen-
erating the tangent linear models, or the forward model in
different forms, such as TAMC/TAF [9], Odyssee [10], and
ADIC/ADIFOR [11]. Generally, there are two strategies
for producing the tangent linear codes, i.e., operator over-
loading and code transformation. For the purpose of better
performance of the tangent linear model, most of the tools
are designed in the latter way. Different from other tools,
ADIC/ADIFOR is implemented with several advanced
techniques such as XAIF and SparseLinC, which can be
used to calculate the entire or part of the Jacobian in an
efficient way.

This paper is organized as follows: in Section 2, we first
introduce the functionality and several features of the
DFT software, and then analyze the structure and the
style of the tangent linear model generated with the
DFT software by illustrating a tutorial example. In Sec-
tion 3, we concentrate on discussing several dependence
analysis techniques employed in the implementation of
AD tools. And in Section 4, we further discuss the details
of techniques for the implementation of the DFT soft-
ware. In Section 5, some differentiation costs in several
applications are presented, and in Section 6, a summary
of this paper is given.

2. DFT software

DFT is a source-to-source tool for generating the tan-
gent linear model of a program defined by a number of
subroutines and functions. Designed with YACC, DFT is
implemented in C/C++ and supports Fortran 77, partly
Fortran 90/95 extensions. DFT can also be used for gener-
ating the testing functions and analyzing the structure of
the sparse Jacobian. In practice, the tangent linear model
can be used for calculating the Jacobian-vector products,
gradients and the Jacobian.
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2.1. Functionality

2.1.1. Generation of the tangent linear model

The elementary program object transferred with DFT is
a subroutine or a function, in which interface is, respec-
tively, by default of the following forms:

e SUBROUTINE PROC(X_IN, X_OUT, X_IN_OUT,
OTHERS)

e FUNCTION FUNC(X_IN, X OUT, X_IN_OUT,
OTHERS)

where the real-typed parameters X_IN, X OUT and
X_IN_OUT, respectively, denote the input variables, the
output variables and the input and output variables, and
OTHERS denotes a number of integer, character and log-
ical variables. Correspondently, the interfaces of the tan-
gent linear codes generated with DFT are by default of
the following forms:

« SUBROUTINE Diff PROC(Diff X_IN, X_IN,
Diff X_OUT, X_OUT, Diff X_IN_OUT, X_IN_OUT,
OTHERS)

e FUNCTION Diff FUNC(Diff X_IN, X_IN, Diff X_
OUT, X OUT, Diff X IN OUT, X_IN_OUT,
OTHERS)

where each of the real-typed variables is followed by its
correspondent differentiation which is headed with the pre-
fix “Diff ” by default. The standard structure of the tan-
gent linear model generated with the DFT software will
be illustrated in detail in Section 2.3.

2.1.2. Generation of the testing codes

There are a number of approaches to check the correct-
ness of the tangent linear model, but the most rigid one is
the gradient testing. In the gradient testing, each element of
the gradient of each output variable that is calculated at
any point by the tangent linear model should be well
approximated to that obtained by divided differencing
approximation if the norm of the increments is small
enough. However, it is impossible under the limitation both
in memory and in the running time if the number of the
inputs and outputs is terrifically large. An alternative
approach implemented in the DFT software is to check
the misfit at a random point between the differentiation
results that are calculated with the tangent linear model
and by the difference of calling the underlying functions
twice.

Without the loss of generality, and given a vector-valued
function F: R" — R, if it is differentiable at a random
point Xy, the Jacobian F'(X,) exists and

IF(Xo + AX) — F(Xo)]|
[|F'(Xo)AX]]

— 1, [[AX][—=0 (1)

To check the correctness of the tangent linear model in a
statistical way, DFT can generate the testing codes of the
interface as the following forms:

¢ SUBROUTINE Check Diff PROC(X_IN, X OUT,
X_IN _OUT, OTHERYS)

¢ FUNCTION  Check Diff FUNC(X_IN,
X_IN_OUT, OTHERYS)

X_OUT,

where parameters are just the duplication of the underlying
subroutine or function. As referred to in relation (1), the
values of the input and output variables X _IN_OUT
should be stored in advance before calling the underlying
functions and the tangent linear model. Since the memory
requirement is limited in a specific application, it is not
impossible to take each of the variables in the parameter
list as both an input variable and an output variable in a
simple way. From this point, the IO dependence analysis
is indispensable anyway.

2.1.3. Detection of sparsity

In specific applications, the sparse Jacobian matrix of a
vector-valued function can be effectively calculated by
using the tangent linear model or the adjoint model. By
carefully analyzing the global dependence of all variables,
we can derive the sparse structure of the Jacobian, as well
as the left/right seed matrix which can be taken as the
inputs of the tangent linear model row-by-row or the inputs
of the adjoint model column-by-column, yielding a com-
pressed Jacobian matrix with less time cost.

Besides the above descriptions, there are several auxil-
iary functions such as flexible running optional parameters,
printing the calling tree structure of a specific subroutine
and function, global data dependence analysis, code opti-
mization by the binary reducing method, partly supporting
MPI and PETSc [12], and statistical analysis for the com-
plexity of each program objects.

2.2. Features

Apart from several auxiliary functions such as generat-
ing the testing functions, optimizing the code through the
binary reducing technique, and printing the calling tree
structures, DFT is much different from other tools in the
following aspects.

2.2.1. Static dependence analysis

We focus on three kinds of dependence analyses, which
include the input/output (I0) dependence analysis, the data
dependence analysis and the procedure dependence analy-
sis. For the effective implementation of softwares, all fur-
ther discussions are limited to the static analysis
approach. In addition, the iteration dependence analysis
is another challenge in specific applications such as numer-
ical iterations and recursive functions.

Apparently, the data dependency is closely related to the
10 dependency. However, the former concentrates on the
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dependence relationship between any two variables, while
the latter is a relative notation that is employed to describe
the input/output behavior of a variable within a program
object defined by a segment of program lines.

By recording the 10 knowledge of argument parameters
in each procedure, DFT can calculate the final 10 relation-
ship of any argument parameter through deep recursive
dependence analysis. This process can be represented as
an iteration A, = A, @AZ, where A, is the initial depen-
dence matrix, which is proved to be of logarithmical con-
vergence in the next section.

Through the global dependence analysis between proce-
dures, DFT can be used to print the calling tree structure of
any subroutine or function (see Fig. 1), which is much help-
ful in analyzing and checking the differentiation models in
complicated applications.

2.2.2. Structural differentiation

The tangent linear model generated using the DFT soft-
ware is of the same structure as the underlying functions,
such as DO/ENDDO/CONTINUE, IF/THEN/ELSE/
ENDIF, and GOTO.

The differentiation of an active variable in the tangent
linear model is always accompanied with itself, as well as
the differentiation statement accompanied with the under-
lying one. Since all the differentiation transformation is
performed from structure to structure and from statement
to statement, the differentiation codes are of the same
structure and features such as vectorized and parallelism,
data precision, and data type.

2.3. Tutorial examples

In the following, we introduce the structure of the tan-
gent linear model by illustrating an example generated with
the DFT software. Perigee is an independent subroutine in
the GPS/MET Rayshooting model without calling any
subroutine or function, see Fig. 2.

As illustrated by this example, the reconstruction of the
tangent linear model is just a differentiation process from
structure to structure and statement by statement. Specifi-
cally, each evaluation statement is followed by its differen-
tiation correspondence. And either in the argument list or
in the declarations of variable list, each real-typed variable,
which is called the active variable in most documents, is
always followed by its differentiation perturbation.

In the second circulation structure of the underlying
subroutine shown in Fig. 2, the right-hand side expression
is fairly complicated such that its differentiation correspon-
dence in the tangent linear model is also fairly long and
complicated, which causes a poor running performance.
To solve this problem, the binary reducing method is
employed for addressing this problem. Detailed discussion
will be presented in Section 4.3.

The include statement is an implicit quotation of a seg-
ment of program lines, whose differentiation correspon-
dence is also generated with the DFT software and
encapsulated in a file with the name of the default prefix
“Diff ” in the same directory. For the purpose of the 10
dependence analysis, DFT extends all the include lines into
the current routine in advance.

Except for the headline descriptions in each generated
file, all the comment lines in the tangent linear models
are removed by default. The current version of DFT sup-
ports various styles of comment lines from Fortran 77 to
Fortran 90/95.

A large number of statements, such as STOP,
RETURN/END, and GOTO, have the correspondent dif-
ferentiation codes as simple duplications of themselves. As
well as in the cases of nonlinear expressions, IF/ELSE IF
conditions and subroutine/function calling statements, it
is of great significance that all the values of each controlling
variable in these statements should be full in accordance
with those in the underlying functions.

Besides the above descriptions, the differentiation corre-
spondence of a subroutine calling statement is just the call-

RayFind T LSS —— Perigee
— Spher
— Cartes
— RefRGr xyz2g
LL2JK —— VGradl — Isearchv
HLimits
RefCIRA xyz2g
—|: INMCIRA — Vgrad — Searchv
Int3SL —— Verad ISearchv
— Dabel
— RayEnd RKS —— RP RefGr xyz2g
LL2IK—VGradl
HLimits
RefCIRA —I: xXyz2g
IntCIRA
In3SL — Vgrad

Fig. 1. A piece of the calling tree structure of the GPS/MET Rayshooting model.
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Subroutine perigee (X1, X2, P, NV)

* Subroutine perigee (vectorized) calculates the ray
perigee
vector for a straight ray connecting two given points.
Author: M.E. Gorbunocv

#include " /include/defaults.inc"

*Input parameters:
Dimension X1(3,NV), X2(3, NV)

*Output parameters:
Dimension P(3, NV)

*Local parameters:
Parameter (NOMax = 1000)
Dimension U(3,MaxSize), XU(MaxSize)

Do 10 i=1,3
Do 10 n=1, NV

U(i,n n) = X1(3i, n) - X2(i, n)

10 Continue

Do 20 n=1, NV

XU(n) = (XI(1,n)*U (1, n) + X1(2,n)*U (2, n) +
> XI1(3, n)*U(3, n))/
> WU, n)**2 + U2, n)**2 + U(3, n)**2)

20 Continue

Do 30 i=1,3

Do 30 n=1, NV

P(i,n) = X1(i,n) - U(i, n)*XU(n)
30 Continue

Return
End

Subroutine Diff_Perigee (Diff_XI,X1,Diff_X2,X2,
> Diff_P,P,NV)

#include "./include/Diff_defaults.inc"
Dimension Diff_X1(3, NV),X1(3, NV),
> Diff X2(3, NV).X2(3, NV)
Dimension Diff_P(3, NV), P(3, NV)
Parameter (NOMax = 1000)
Dimension Diff_U(3,MaxSize), U(3,MaxSize),
> Diff_XU(MaxSize),XU(MaxSize)

Do 10i=1,3
Do 10 n=1, NV
Diff_U(i,n) = Diff_X1(i,n) — Diff_X2(i,n)
U(i,n) = X1(i,n) - X2(i,n)
10 Continue

Do20n=1,NV
Diff_ XU(n) =((XI(1,n)*Diff _U(1,n) +Diff_X1(1,n)
> *U(1,n) +(X1(2,n)*Diff_U(2,n) +Diff_X1(2,n)*U(2,n))
+(XI(3,0)*Diff_U(3,n) +Diff_X1(3,0)*U(3,n)))
> #(U(Ln)**2 +U(2,0)**2 +U(3,n)**2) -(2.0*Diff_U(1,n)
> *U(1,n) +2.0*Diff_U(2,n)*U(2,n) +2.0*Diff_U(3,n)
>*UB,n)*(X1(1,n)*U(1,n) +X1(2,n)*U(2,n) +X1(3,n)
> *UG)N/((UL,n)**2 +U(2,n)**2 +U(3,n)**2)*(U(1,n)
> 42 +U(2,n)**2 +U(3,n)**2))
XU(n) =(XI(1,n)*U(1,n) +X12,n)*U (2.n) +X1(3.n)
> *UGBn)/I(UL,n)**2 +U(2,n)**2 +U (3,n)**2)
20  Continue

v

Do30i=13
Do 30 n =1,NV
Diff_P(i,n) =Diff_X1(i,n) -(U(i,n)*Diff XU(n)
> +Diff_U(i,n)*XU(n))
P(i,n)=X1(i,n) -U(i,n)*XU(n)
30  Continue

Return
End

Fig. 2. The tangent linear model generated with the DFT software.

ing of its tangent linear subroutine, in which the calcula-
tions of all the independent variables are always followed
by the calculations of their differentiation perturbations.
Things are a little different in the case of function calling.
Apart from the calling of the tangent linear function in
the differentiation correspondence of a numerical expres-
sion, another calling of the underlying function is per-
formed in the calculation of the underlying expression,
which results in poor performance, in particular, if the run-
ning cost of the underlying function is terrifically large.
Fortunately, this performance inefficiency can be avoided
as the binary reducing method is applied. In addition, as
to be discussed in Section 4.2, the tangent linear codes of
singular functions are different, but one can quote their dif-
ferentiation correspondences from the generated differenti-
ation library in a simple way.

3. Dependence analysis
3.1. Data dependence analysis

Given a real-typed variable set X = { X, X, -+, X,,}, we
define an n-dimensional dependence matrix 4 at a given
point X as follows:

0, X, is independent of X;
a;; = .
! 1, X, is dependent on X
where X; is independent of X;, which denotes that to arbi-

trary values of X, we have 0X;/0X; = 0, and X; is dependent
on X; which denotes that there exists at least one point in

the definition space of X, and we have 6Xl~/an # 0. For
further discussions, we specially define the addition opera-
tion and the multiplication operation on {0, 1}, which sat-
isfy the following relations Va,b € {0, 1}, we have

H1e0=1, 000=0, 1pl=1
2)asb=bda
3)1-0=0,0-0=0,1-1=1

4 a-b=b-a

S)ad(a-b)=a

Assume that F is defined as a mapping from X to X, F:
X — X, the dependence matrix A is just a representation of
the sparse structure of the extended Jacobian matrix of F.
According to the implicit function theory, to arbitrary X;
and X}, 1 < i, j < n, we have

X, _ (OF OX;  OF
ox;  \oX, oX; 0X,

0X, 0K,
k#i,/ an an

(2)

where the first terms that are bracketed on the right-hand-
side are the direct derivatives of X; with respect to X;. From
the above relation we can derive the following result
aj; = a;; D Z Qjk * g
k#i,j
= ayy & (ai - ay) & (ay - ay) & Y ay - ay

k#i,j
—ay ® Y ay - ay (3)

If we define the initial dependence matrix 4, that only
contains information about the direct derivatives of X; with
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respect to X;, 1 < i, j < n, we can calculate the final depen-
dence matrix in finite steps with the following iteration
relations:

m+1 m m m
0‘1‘/+ =a;® Z iy~ Ay (4)
Rewriting the above relation in matrix formation, we have
A1 = Ay © A%, (5)

Algorithm 1 (Static data dependence analysis).

(1) Given the initial dependence matrix A, from the
direct analysis the dependency between each pair of
variables in X

(2) Update with Ak+l =A; D Ai,

(3) If Ay.y = Ay, stop; else k =k + 1 and go to (2)

Lemma 1. Let D denote the maximum number of the nodes
on the computational path with respect to any two nodes on
the computational graph. To calculate the final dependence
matrix through the above iteration relation, the number of
iteration steps will be no more than log, D.

Proof. If X; is dependent on Xj, the proof should only
derive a; = 1 after finite steps by the above algorithm. Sup-
pose X, — X,, — --- — X, is the shortest computational
path from X; to X;, where /; =i, [,,=j, m < D. From the
initial dependence matrix, we have a;,, 6 =1,1<k<
m— 1. After an iteration step with (5), to arbitrary
1 <k <m-2, we have

A liyr = Ayl D § : Ay " AUy liy = Al liyy " Uiy iy = 1
P2
(6)

That is, we derive X, — X;, — X;;, — --- — X, as an-
other shortest computational path from X; to Xj, while
the number of nodes in the path is only half of that in
the last step. Thus, if we repeat the above process for at
most log,m steps, we can finally derive a;,,, =1. O

3.2. 10 dependence analysis

3.2.1. Definitions

Within a specific segment of program lines, a variable is
called the input variable if it has never been evaluated and
is quoted for one or more than one time; a variable is called
the output variable if it has been evaluated before it is
quoted; a variable is called the input and output variable
if it has been quoted for one or more than one time before
it has been evaluated.

From this point of view, a variable may have different
10 types in different segments of program lines. In the sta-
tic dependence analysis with respect to 10, suppose that we
have the knowledge about all IO types of a specific variable
within all the subroutines and functions, it would be a
problem to find out the final 1O relationship of this variable

from all these IO information. To address this problem, we
first present a basic algorithm in the following.

3.2.2. Basic algorithm

Here, we present an algorithm to calculate the 1O type
of a specific variable statement by statement. For simplic-
ity, the IO type of an input/output/input and output vari-
able is again marked with IN/OUT/IN_OUT, and at first
marked by default UNKNOWN. Suppose that we have
known the IO type of a variable before and in the current
statement, then we can calculate its final IO relationship
through the following rules, see Table 1.

As presented in Table 1, if a variable is used as an out-
put variable or an input and output variable before the cur-
rent statement, its final 1O type is always output or input
and output, respectively, no matter what relation it is in
the following program lines.

3.2.3. Variables in the argument list

The IO type of variables that are defined in the argu-
ment list can be calculated through the above algorithm
in a recursive way. With respect to each of the local lines
within a specific subroutine and function, we can calculate
the IO type of a specific argument variable statement by
statement. However, if the current line contains a subrou-
tine or function calling, we can calculate the 10 type of
each argument variable in the same way, which is corre-
spondent with the same position as in the parameter list
of the called subroutine or function. By repeating this pro-
cess until the bottom nodes in the calling tree, we can
finally find out the final IO relationship of this argument
variable.

However, there is an efficient way to calculate the 10
types of all the argument variables within each of the sub-
routines or functions in a calling tree if we perform this
process from bottom to top. Actually, in the implementa-
tion of the DFT software, the IO knowledge of all the argu-
ment variables within each subroutine and function is
calculated after the first sweep of the underlying functions,
as well as of those variables defined in the common blocks.

3.2.4. Variables in common blocks

A variable defined in the common block shares the
same memory space throughout the program, whose
value could be rewritten and quoted in one or more sub-
routines and functions. Since the trace of a common
block variable cannot be located in most instances, the

Table 1
Basic rules for calculation of the 1O relationship.

10 relationship Current
UNKNOWN IN ouT IN_OUT
Before  UNKNOWN UNKNOWN IN ouT IN_OUT
IN IN IN IN. OUT IN OUT
OouT ouT ouT ouT ouT
IN_ OUT IN_ OUT IN_ OUT IN OUT IN OUT
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above algorithm as per the argument parameter list
could meet difficulties when it is directly used for analyz-
ing the IO relationship.

Roughly speaking, there are generally two sorts of
communication schemes in terms of the common blocks.
The first one is the explicit scheme, in which a common
block defined in a specific subroutine or function marked
A is also defined in those subroutines or functions that
call 4 in a direct way. Actually, we can simply calculate
the final 1O relationship of variables in the common
block in the same way as variables in the argument
parameter list.

The other one is the implicit scheme, in which the com-
mon block defined in a specific subroutine or function
marked A is also defined in those subroutines or functions
that do not call 4 in a direct way. Suppose that we have
known information about the local calling tree of each sub-
routine or function, we can simply duplicate the informa-
tion of the common blocks within the current subroutine
or function to all its father nodes, and perform the same
algorithm as in the explicit scheme. However, a large num-
ber of duplications occur if the number of subroutines and
functions that contain the common blocks is relatively
small within the calling tree structure. In this way, it must
result in less efficiency.

Another approach is to record the traces of all the com-
mon blocks during a sweep of the calling tree structure.
With regard to a specific common block, we can derive a
list of subroutines and functions in the nature sequence
from such trace information, for instance, a probable list
as “RayFind — Perigee — Perigee —» RefRGr - VGrad —
VGrad —» RefRGr - RKS —» VGrad - VGrad -RKS —
RayFind” within the calling tree as depicted in Fig. 1. From
the list, we can derive a sub-list for the common block
within a specific subroutine or function, for instance,
“RKS - VGrad —» VGrad - RKS”. With the help of
the sub-list, we can find out the final 1O relationship of
the common block variables within this subroutine or func-
tion through the above approaches. Based on the above
discussions, we present an algorithm in the following.
For the purpose of efficiency, we should similarly perform
this algorithm on a calling tree form bottom to top.

Algorithm 2 (Static 10 dependence analysis for common
block variables).

(1) Given a specific subroutine or function, produce its
local calling tree structure;

(2) Given a specific common block, derive a list of sub-
routines and functions by analyzing its trace in the
calling tree;

(3) Given a specific subroutine or function, derive a sub-
list of subroutines and functions from the above list;

(4) Given a specific variable in the common block within
the subroutine or function, derive a list of IO types
from a sweep of the sub-list of subroutines and
functions;

(5) Perform the above rules on the list of IO types step by
step and finally we can find out the final IO relation-
ship of this variable;

(6) Repeat the above steps if necessary.

4. Implementation details
4.1. Architecture design

The DFT software is implemented on the YACC plat-
form and run on LINUX/UNIX, which is composed of five
major parts, i.e., the lexical analyzer, the syntax parser, sta-
tic dependence analysis, the differentiation library and dif-
ferentiation code transformation, see Fig. 3. The following
descriptions are intended to address the running mecha-
nism for helping the users to produce efficient differentia-
tion codes by using the DFT software productively.

4.1.1. Lexical analyzer

A typical lexical analyzer is specially designed for
extracting identifiers from flows of program statements,
as well as for recognizing the types of these identifiers.
Identifiers are generally divided into three sorts. One is
the system keywords, such as IF/ELSE/ENDIF, DO/
ENDDO, MAX/MIN, and GOTO; the other two are con-
stants and  variables, i.e.,  differentiable and
undifferentiable.

In most instances, it is essential to extract information
about logical and character constants/variables from a
number of statements. For this, we consider about four
types of identifiers, which include differentiable, undifferen-
tiable, character and logical constants/variables. To avoid
ambiguousness, the type of the undifferentiable identifiers
is specially referred to both the integer type and the
unknown type. Apart from the digit numbers and the sys-
tem keepwords, the types of the other identifiers can be rec-
ognized from the information list extracted from the
complicated static data dependence analysis.

4.1.2. Syntax parser

Unlike the tools implementation for the reverse differen-
tiation models, the design of the syntax parser for recon-
structing the forward models is mainly focused on the
differentiation of variables, expressions and statements.

| Static dependence analysis |
Lexical Syntax
analyzer parser

'

L
| AD library |——| Code transformation }—- TL code

Underlying
functions

Testing functions

Fig. 3. Structure of the differentiation transforming system.
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From the viewpoint of computer science, a typical syntax
parse is specially designed for shifting/reducing different
syntax elements of a specific language grammar including
advanced identifiers, phrases, and expressions, statements.
According to the classification of identifiers, each of these
syntax elements is uniformly divided into four types, which
include differentiable, undifferentiable, character and
logical.

Roughly speaking, the most simplified syntax parser
that can only recognize the numerical expressions and a
small number of statements such as headlines and include
lines can nearly deal with everything in the reconstruction
of the tangent linear model. For the purpose of good per-
formance, it is essential to design a relatively complete lan-
guage compiler for extracting information from the
underlying functions as much as we can. The extracted
information includes the different complexities of the
underlying functions, the IO knowledge of variables, and
the types of different program objects. In addition, a
refined syntax parser can also help to produce terse codes.
Thus, a good syntax parser can not only remove all the syn-
tax shift/reduce conflicts, but also recognize various types
of each program object in a correct way.

For the purpose of terse codes, we also pay attention to
another characteristic of expressions particularly, which
can effectively avoid the bracket redundancies in compli-
cated differentiation expressions. In this methodology,
expressions are generally divided into three types, which
include additive expressions, half-additive expressions and
unadditive expressions. Detailed discussions have been pre-
sented in the users’ manual.

4.1.3. Static dependence analysis

Due to the procedure dependency between subroutines
and functions, the DFT software should be running twice.
In the first running, it is essential to extract, find out and
record the necessary information about each program
object at any position. As described above, all kinds of
dependence analyses are not only essential in analyzing dif-
ferent types of program objects in a correct way, but are
also helpful in producing efficient resulting codes in the sec-
ond running. Besides the dependence analysis discussed
above, there are other related things including the data type
analysis and the object complexity analysis.

The data type analysis involves the finding out of the
data type of each identifier at any position, which is used
in these cases including shifting and reducing a series of
strings, analyzing the data types of parameters in the call-
ing subroutines or functions, and producing the testing
functions. In addition, the data type of each variable can
be dynamically inquired from the variable information list,
and all the final data types of both the argument variables
and the common block variables in each subroutine or
function are stored into files after the first running.

The object complexity analysis is helpful in dramatically
reducing the memory requirement of the DFT software in
the second running, which concerns a number of program

characteristics such as the number of argument variables,
the number of the common blocks and the number of the
local variables, the number of subroutines and functions
in the underlying functions, and the maximum length of
variables.

4.1.4. AD library

The AD library is a mechanism that can dynamically
produce the differentiation correspondences of all the sin-
gular functions and the nonsingular functions, useful inter-
faces, and general testing codes.

4.1.5. Code transformation

In the second running of the DFT software, the under-
lying function is transformed into the tangent linear model
statement by statement. Concretely, the lexical analyzer
first reads a complete statement and partitions it into a
number of identifiers, and finds out the data type of each
identifier through the data dependence analysis. Then the
syntax parser shifts/reduces these identifiers and their dif-
ferentiation correspondences, and finally forms into the
differentiation statement that is followed by the original
one.

4.2. Singular differentiation

There are a number of singular functions in Fortran,
which is also called the on/off problems in some other doc-
umentations. For simplicity, we particularly present the
equivalent differentiation of five singular functions as listed
in Table 2. Besides, the differentiation correspondences of
the other singular functions, including sqrt, asin, and acos,
are provided in the differentiation library, which are uni-
formly headed with the prefix “Diff ” by default. In addi-
tion, the differentiation correspondence of the max/min
function that is of more than two parameters is also pre-
sented in the differentiation library.

With respect to the differentiation values at the singular
points, one can simply set it at zero to keep the calculation
satiability. However, one can also set different values in a
specific application. Some interesting documentations can
be found in related documents.

4.3. Code optimization

For the purpose of better performance, several tech-
niques are used in the optimization of the tangent linear
model, based on the following considerations. First, com-
pared with the underlying functions, the number of opera-
tions in the tangent linear model is roughly doubled
anywhere. As a result, the data locality of the original pro-
gram lines could be ruined, since each statement is followed
by its differentiation correspondence. As we know, it is
really a big challenge to arrange the data locality of a spe-
cific program in the best way. However, one cannot neglect
this problem if the running cost of a segment of program
lines is very time-consuming.
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Table 2

Equivalent differentiation of singular functions.

Singular Equivalent differentiation Singular
function points
abs(x) sign(1.0,x)dx x=0.0
sign(x, y) sign (1.0, xy)dx xy =0.0
dim(x, y) (1.0 — sign(1.0,y — x)) - 0.5(dx — dy) x<y
max(x,y) (dx +dy + (dx — dy) - sign(1.0,x — y)) - 0.5 x=y
min(x, y) (dx+dy — (dx — dy) - sign(1.0,x — »)) - 0.5 x=y

Second, if a variable is locally used as a constant, some
related calculations are unnecessary. By default, each vari-
able declared as a real type is taken as the active variable,
which is always accompanied by its differentiation else-
where. However, if a variable is declared as a constant
before running the DFT software, its differentiation as well
as the related calculations will be removed from the tangent
linear model.

Third, if we perform the differentiation on a complicated
expression in the usual way, the differentiation correspon-
dence is not acceptable in some cases. By representation of
a segment of evaluation statements with the computational
graph, the best implementation could be found. In the fol-
lowing, we specially discuss the binary reducing method.

We first compare two different differentiation approaches
that are depicted in Fig. 4. The underlying function is com-
posed of a typical statement that calculates the product of
five independent variables. The differentiation calculation
in the left implementation needs operations including 18
mult and 4 add, while that in the right implementation
needs 12 mult and 4 add. However, if we calculate the prod-
uct of n independent variables, the operations in the differ-
entiation calculation will be (n — 1)-(n +4)/2 mult and
n — 1 add in the left implementation and 3n — 3 mult and
n — 1 add in the right implementation, respectively.

Roughly speaking, the binary reducing method is a tech-
nique which reduces each basic operation such as add, sub,
mult, divide and power into a uniform identifier at the
stage of syntax parsing. This technique can be automati-
cally selected with respect to the complexity of a statement,
or can be activated from the running parameter options.

5. Applications

In the following, we only present the differentiation costs
of the tangent linear models in five applications, which
include the 3D-VAR for the GPS/MET Raytracing model
[4], the 4D-VAR for the GPS/MET Rayshooting model

Fig. 5. The running costs of the tangent linear models in several
applications.

[13], sensitivity analysis for the AGCM model [14], implicit
solving of the spherical barotropic atmospheric shallow
water equations [15] and the VB orbital optimization with
the XIAMEN software [16]. The costs shown in Fig. 5 are
roughly 1.35-2.44 times that of the underlying functions.

We use the Jacobian-free Newton—Krylov method to
solve the shallow water equations, in which the tangent
linear model is directly used to calculate the Jacobian-vec-
tor products. In the other four applications, the tangent
linear models are mainly used for testing the correctness
of the adjoint models. In the XIAMEN software, the tan-
gent linear model is also used instead of the finite differ-
encing method to calculate the gradients of the cost
function.

6. Summary and conclusions

The tangent linear models generated with the DFT soft-
ware can be used in calculating the Jacobian- and the Hes-
sian-vector products, and in testing the correctness of the
adjoint models and sensitivity analysis. Some auxiliary
functions of the DFT software are helpful in most applica-
tions such as automatically generating the testing func-
tions, printing the calling tree structures, and detecting
the structure of the sparse Jacobian. From the initial
dependence matrix, the final dependence matrix can be cal-
culated with logarithmical convergence complexity through
the algorithm presented in Section 3.1. Another algorithm
that is presented in Section 3.2 can be used to find out the
final 10O relationship of a specific variable, no matter what
it is used in the local part of a subroutine or function, or
declared in the argument parameter list, or defined in the
common block. In terms of code optimization, several tech-
niques are applied such as the binary reducing method, var-
iable used as a constant parameter, and equivalent
differentiation for singular functions. Finally, we have pre-

Diff ¥ =X(1)*X(2)%X(3)%X(4) *Di 1 X(5)
> +(X(1) %X (2) %X(3)
> *DIfF X(4) + (K1) *X(Q2)*Di 1 X(3)
> +(X(W)*Dift X(2) +Dirr X(1)
> kX(2))#X(3))*X(4))%X(5)

Y =X(1)#X(2) %X(3) %X (4) % X(5)

Diff Tmpvl =X(\)%Diff X(2) +Diff X(1)%X(2)
Tmpvl =X(1)*X(2)

Diff Tmpv2 =TmpvI#Diff X(3) +Diff TmpvIsX(3)
Tmpv2 = TmpvI#X(3)

Diff Tmpv3 =Tmpv2#Diff X(4) +Diff Tmpv2+X(4)
Tmpv3 = Tmpv2+X(4)

Diff TmpvA =Tmpv3*Diff X(5) +Diff Tmpv3+X(5)
Tmpvd = Tmpv3+X(5)

Diff ¥V =Diff Tmpvi

¥ =Tmpva

Fig. 4. Code optimization through the binary reducing method.
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sented the differentiation costs of five applications to verify
the performance of the DFT software.
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